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1. Pliys. A :  Math. Gen. 27 (1994) 2653-2667. Printed in the UK 

Statistics of confined self-avoiding walks. 
Part I: chain dimensions and concentration profiles 

Alain Jaeckel and Jean Dayantis 
CNRS, lnstitut Charles Sadran, 6, rue Boussingault. 67083 Strasbourg Cede%, France 

Received 26 August 1993, in final form 4 January 1994 

Abstract. Self-avoiding (SAWS) and random-flight (RFWE) walks of varying number N of 
steps have been generated inside spheres of varying diameter R, using a random number 
generator and an od hoc computer program. The Monte Carlo samples, usually of 100 WO 
walks, thus obtained, allowed the determination of the following ratios. as a function of N 
and R: first, the ratio A=(r.(N,R))/(r(N, P)), where (r(N, R)) stands for the mean (in 
modulus) end-to-end distance of an N-step confined walk, and (r(N, a)) the same quantity 
for an N-step non-confined walk; also, the corresponding ratios B. C and D. for the root- 
mean-square end-to-end distance (?}'/', lhe mean radius of gyration ( rs ) ,  and, finally, fhe 
root-mean-square radius of gyration {e)  "'. If reduced lengths are used, where the reduc- 
tion length is of the form N", Y being a xaling exponent, it is found that scalin& i.e. 
independence of the above ratios with respecl to  the step number in the walk, is well obeyed. 
The scaling exponent is equal lo 0.592 for SAWS and to 0.500 for RFWS. 

In order to determine the concentration profiles of end, mid- and overall steps inside 
the sphere. the last has been divided in  a prescribed number of spherical shells, up lo 22, 
of the same thickness, and the number of steps falling inside each shell registered. Again 
using reduced lengths, if was thus found that all concentration profiles obey scaling, that 
is, the wncentration profile as a function of the reduced distance from the centre of the 
sphere is defined through a single cumc, whatever the value of N. Our results allow a 
comparison of the parameters for confined SAW and RPWS. 

1. Introduction 

In  this paper we present a detailed analysis of the statistics of self-avoiding walks 
(SAWS) confined inside spheres of varying diameter. The incentive for studying this topic 
originates, of course, in that polymer chains in pores, a problem relevant to gel permea- 
tion chromatography (GPC) can be modelled by SAWS confined by boundaries of spher- 
ical or other shape. However, the present paper should primarily be considered as a 
study in its own right of the statistics of confined SAWS, independently of any correlation 
with real polymer chains confined inside pores. 

General scaling arguments related to free or confined chains have been given by de 
Gennes [ 11. Previous theoretical, exact enumeration (EE) and Monte Carlo (MC) studies 
of random-fligh t walks ( RFWS) or SAWS confined inside various geometries are numerous 
[2-221. These publications do not include papers more specifically concerned with 
adsorption phenomena or theta point polymer chain statistics. Despite this, it appears 
that, from the viewpoint of basic statistical features, several properties have not been 
studied, or, at least, properly elucidated. This statement is particularly true with respect 
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to SAWS. More specifically, for SAWS confined inside a sphere, one can make reference 
to the following properties: (a) the mean and mean-square end-to-end distances and 
radii of gyration, as a function of the radius R of the confining sphere and the number 
N of steps in the walk; ( b )  the distribution of end and mid-steps of confined SAWS, as 
afunctionofr, thedistance from thecentreofthesphere, Nand R ;  (c) theconcentration 
profile of steps as a function of I ,  Nand R; and ( d )  the entropy change upon confine- 
ment of the walk. 

For RFW~,  points (b), (c) and ( d )  above have been addressed analytically by Edwards 
and Freed [3] and by Collins and Wragg [4]. To our knowledge, no such equivalent 
treatment has been proposed for SAWS, and possibly the problem is not amenable to 
rigorous analytical treatment. Hence, the interest of addressing these topics and also 
additional ones using MC simulations. Here, in part I of the present study, points (a), 
(b )  and (c) above will be addressed. Point ( d )  and related topics are left to a forthcoming 
paper. 

Statistical samples of N-step SAWS embedded in the simple cubic lattice and confined 
by spheres of varying radius R were computer generated. Two sample generation pro- 
cedures were used. These are now described in detail. 

2. Chain generation processes-absorbing and reflecting statistics 

Computer generation of walks, whether SAWS or RFWS, may be performed on- or off- 
lattice. Here we shall be exclusively concerned with SAWS and R F W ~  generated on the 
simple cubic lattice. The basic generation processes of SAWS in general (on- or off-lattice 
SAWS) are essentially two. 

In a first-generation procedure [23,24], considering first free (non-confined) walks, 
the SAWS are generated step by step, using a random number generator, and all config- 
urations which display lattice points twice visited by steps are eliminated from the 
statistics. In practice, the chain generation process is stopped as soon as the walk being 
generated encounters an already visited lattice point, and a new chain is initiated until 
a chain is obtained which is devoid of any double occupancy. By this procedure, in 
order to define mean values, all chains in the sample have the same statistical weight. 
This advantage is, however, counterbalanced by attrifion: as soon as the number of 
steps N in the walk becomes large enough, the attrition (i.e. the probability of failure 
when initiating a chain) becomes close to one, and, correspondingly, the yield close to 
zero. This procedure, pionneered by Wall and his coworkers [23,24], wecall the absorb- 
ing chain generation procedure, and the resulting statistics absorbing statistics (AS). 

The attrition, a function of the number N of steps in the walk, will be denoted by the 
symbol A .  

In a second-generation procedure, initiated by Rosenbluth and Rosenbluth [25], 
the walk is not stopped when it encounters an already visited lattice point. Instead, 
another direction with no such effect is sought. If there are k such directions, one of 
these is then taken with probability k-'. I n  practice, the computer screens for possible 
directions one or more steps ahead, and chooses with equal probability one of these 
possible directions. Thus, an initiated chain is always terminated (no attrition), unless 
the chain goes through a nest. I n  such a case, the walk is eliminated, and a new walk 
is initiated. This generation procedure we call the reflecting chain generation procedure, 
and the corresponding statistics reflecting sfufistics (RS). In RS, the configurations 
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obtained do not occur with the same probability. Compact configurations (i.e. config- 
urations where many neighbour sites of a given step are occupied by other steps) are 
favoured. For this reason, any configuration obtained must be weighed by a proper 
statistical weight, in order to revert to the equal probability of configurations of absorb- 
ing statistics. Let us consider the j t h  SAW generated in the MC sample of N-step SAWS 

and let us introduce the quantity 
I I 6 1  

1 ” 1 ; / 6 ~ 5 ~ - ’ =  n (i)”8,/Zmax (la) 

Cn:=N ( Ib)  

Z m , , = 6 x 5 N - ‘ .  ( I C )  

I =  I 

Here i stands for the number of possible choices for the direction to follow when 
generating the kth step of SAW j (up to five for all steps in the case of the simple cubic 
lattice, except the first one, for which there are six or less available directions, according 
to whether the first step lies on a lattice point far from or in the vicinity of the sphere 
surface); E! is the number of occurrences of this number of choices for the whole walk 
when completed, where n& takes the values one or zero. The statistical weight to be 
attributed to SAW j in the sample is then d [25-271. Qualitatively, this means that a 
SAW, where, in the mean, many neighbouring lattice points of any steps are occupied 
by other steps of the SAW (‘compact’ SAWS) occur more often than necessary in the 
MC sample when reflecting statistics are used. The more ‘compact’ the configuration 
considered, the smaller the corresponding weighting factor wJ will then be. For a com- 
pletely ‘compact’ SAW (=globule or else Hamiltonian walk on a lattice), id is of the 
order of 5“-”. The other limit of w/ is one, when there are no nearest neighbours 
between steps in the walk. Obviously. the weighting factor dereases in the mean a s ~ N  
increases. The mean value in a sample of S SAWS, 

5 

(w)=s-‘ C wj (2) 
I =  I 

is a fundamental parameter in RS, as it will become clear in what follows. We shall 
refer to it as the conipactness parameter. 

The same parameters as above, i.e. the attrition A in AS and the parameter ( W )  
in RS, also apply if now the walk, instead of being free in space, is constrained to lie 
inside the boundary defined by a sphere of radius R. In  particular the attrition A(N, R) 
in AS is enhanced by the presence of the boundary, since now any configuration crossing 
the surface of the sphere is eliminated from the statistics, even if the walk is otherwise 
a SAW. In what follows A ( N ,  m) stands for the attrition of free (unconfined) SAWS, 
while A ( N ,  R) stands for the attrition of walks confined inside a sphere of radius R. 
Analogously, dropping for simplicity the mean value brackets, we define in RS W(N, m) 
and W ( N ,  R). 

The concepts of attrition and compactness may also be applied to confined RFWS. 

For free RFWS, the attrition is zero and the compactness parameter equal to one. 
For the purposes of the present study, no sample enrichment procedures have been 

considered. Only the two basic step-by-step generation procedures have been used, here 
designated by absorbing and reflecting procedures. These two basic procedures are 
variously named in the literature. Our particular designations of absorbing and reflecting 
present the advantage of being reminiscent of the physics of the generation process. 
Further, they are in accord with Smoluchowski’s denominations, who was the first to 
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consider absorbing and reflecting barriers, when studying the physics of colloYd aggrega- 
tion [28, 291. To end this section let us point out that non-weighed RS, i.e. the statistics 
of the reflecting generation procedure, where all configurations in the sample are given 
the same statistical weight, may be of interest in its own right. This statistics, however, 
will not be considered here, the study being restricted to AS and the equivalent weighed 
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RS (WRS). 

3. The computer programs 

The distinctive feature of our walk generation process is that the walks should lie inside 
spheres of radius R. To initialize a walk, three integer random numbers lying between 
zero and R are first obtained using a random number generation procedure. If the 
corresponding point, taking as the origin of Cartesian coordinates the centre of the 
sphere, corresponds to a lattice point within the sphere, the walk generation process is 
pursued, by instructing the random number generator to provide an integer lying 
between one and six, which will define the direction of the first step in the walk. 
Otherwise, a new set of three random numbers is sought. This procedure ensures the 
statistical independence of the three coordinates x, y and z, and a uniform distribution 
of starting points for all lattice points inside the sphere. For the second and all following 
steps in the walk, one of the six possible directions is excluded, that corresponding to 
the reverse walk. In AS, the walk is completed only if at no time does it go through an 
already occupied lattice point and at no time crosses the surface of the sphere. This 
means that, as N increases and (or) R decreases, the attrition A(N, R) very rapidly 
becomes very close to one, and correspondingly the yield 1 - A(N, R) close to zero. To 
circumvent this effect, RS has to be used instead. Here the number of random integers 
provided corresponds at each step being generated to the number of allowed directions 
for this step, this being determined by the previously generated steps in the walk and 
the surface of the sphere. Only if the walk goes inside a nest (no further possibility to 
pursue the walk generation process) is the walk abandoned, and a new walk initiated. 
Thus, in RS, the attrition is usually small, except if the dimensions of the confining 
sphere are of the same order of magnitude as those of the chain, or smaller. Most of 
our MC data have been obtained using the weighed reflecting procedure, the absorbing 
procedure having been used only in a limited number of instances, primarily in order 
to ensure that the results from both procedures are statistically indistinguishable. 

In order to be able to specify the distribution of end and mid-points inside the 
sphere, as well as the concentration profile of steps, as functions of the distance r from 
the centre (points (a) to (c)  in the introduction), the following refinement was intro- 
duced in the computer program: the sphere of radius R was divided into an arbitrary 
number (up to 22) of spherical shells of the same thickness. The number of, for example, 
end-points of SAWS in the MC sample, falling inside each spherical shell, was recorded 
by the computer, and this number divided by the number of lattice points within each 
shell, to ensure a consistent determination of concentration or density. The versatility 
of our program also permitted to initiate the walk generation process not uniformly 
inside the sphere, but only inside some (in particular only one) of the prescribed spher- 
ical shells. Thus, it is possible to specify the statistics of SAWS starting from the central 
or any other shell, and even only from the centre of the sphere. Further, it is also 
possible to attribute different weights to the lattice points in different shells for the 
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initialization procedure. In the present paper only the statistics of the uniform distribu- 
tion of starting points will be reported (i.e. the basic case where all lattice points within 
the sphere have equal probability to be considered as starting points). 

For completeness and in order to make a comparison available, RFWS have also been 
generated. The generation procedures are the same aspreviously, with the difference that 
double or multiple occupancy of a lattice site is not now forbidden. Thus, attrition here 
orginates only in the presence of a boundary, and similarly the compactness parameter 
U'differs from one only because of this boundary, since near the surface of the sphere 
there are less than six possible directions to continue generating the random walk. 

4. Monte Carlo results for chain dimensions and concentration profiles 

In this paper we give results for the mean chain dimensions and concentration profiles 
of confined chains, as functions of the number N of steps in the chain and the radius 
R of the confining sphere. The number of configurations of confined SAWS and related 
problems, especially the entropy problem, will be dealt with in a forthcoming paper. 

Since most of our MC data have been obtained using WRS. we give the definitions 
of the various mean quantities we used for this statistics below. The corresponding 
definitions for AS are obtained by letting all d in the equations below equal unity: 

In the above relationships, I-' is the end-to-end distance (in modulus) of walk j, and 
.', the corresponding radius of gyration. S is the sample magnitude. 

From the onset, it may be convenient to express all data using reduced variables 
~ ~ = R / ( r ( o o ) ) ~  and p = r / ( r ( m ) ) , ,  where R is the radius of the confining sphere, I' 
the distance from the centre of the sphere, and ( ~ ' ( o o ) ) ~  the mean end-to-end distance 
of N step walks in free space. In this way, scaling, that is, properties which depend on 
po and p but not on N, will become apparent at once. Of course, instead of using 
( r fco) )  as reduction parameter, one could have just as well used (?(m))"*, or the mean 
or root-mean-square radius of gyration. All these quantities are essentially equivalent, as 
for large enough N (say, N > 2 0 )  they all obey, to a good approximation, a simple law 
of the form 

where v is a scaling exponent (critical exponent for the correlation length) and U, a 
prefactor relevant to the mean quantity ( ~ ( o o ) ) .  Equation (7) has been established in 
the earliest days of simulations on SAWS [23,24], and the fact that it now appears to 
strictly correct only in the limit of very large N (otherwise one has to take into account 
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Table 2. A. E,  C and D. as defined in table 1, as functions of ,m. the reduced radius of the 
confining sphere. MC results for SAWS from WRS. Also shown are the results for random- 
flight statistics (RE). For SAWS, there i s  good agreement with the results of table I, that 
is, AS and WRS are equivalent and may be used interchangeably. Table 2 also shows that 
scaling. that is, independence of the parameters with respect to the number of steps N in  
the walk. is well obeyed, except for the shortest walk o f  18 steps and the smallest values 
of p o .  I t  should be remarked that for not confined (free) RPS, the theoretical value 6"'= 
2.4495 for the ratio B I D  i s  not yet attained for 58 steps. while in WRS a limiting value o f  the 
order of 2.51 for the above ratio is already attained for as few as 18 steps. Complementary 
simulations. not reported here, have shown that for RFS the ratio increases slowly with N .  
to be within 0.005 of the theoretical limiting value for 250 steps. No explanation is offered 
for this difference in behaviour between SAWS and R P W ~ ,  which Seems to be reported here 
for the first time. The error is estimated to be 10.006. 

AS-WRS R b3 

0" A B c D A B C D 
18 leps 
( r (  CO)) = 5.52 
(,,(a)) =2.30 

4.0 0.987 
3.0 0.980 
2.0 0.964 
1.5 0.936 
I .o 0.869 
0.8 0.777 
0.6 0.607 
0.4 0.394 

28 sleps 
(r(m))=7.18 
( r , (w) )  =2.98 

4.0 0.985 
3.0 0.978 
2.0 0.961 
1.5 0.936 
I .O 0.853 
0.8 0.753 
0.6 0.609 
0.4 0.418 

38 steps 
(v(m))=8.63 
( r8 (oo) )  =3.58 

4.0 0.982 
3.0 0.977 
2.0 0.951 
1.5 0.930 
I .O 0.849 
0.8 0.751 
0.6 0.603 

(?(m))"2= 5.84 
(r:(m))'"=2.33 

0.987 0.991 
0.980 0.987 
0.964 0.978 
0.938 0.963 
0.869 0.925 
0.775 0.874 
0.605 0.778 
0.388 0.593 

(?(m))'/'=7.62 
(r:(m))"'= 3.03 

0.985 0.991 
0.978 0.988 
0.961 0.977 
0.936 0.963 
0.852 0.916 
0.750 0.859 
0.605 0.772 
0.414 0.615 

(r.'(ffi))'''= 9.16 
( r : ( f f i ) ) ' I 2 =  3.64 

0.983 0.989 
0.978 0.986 
0.953 0.972 
0.931 0.958 
0.849 0.910 
0.749 0.852 
0.599 0.760 

0.994 
0.990 
0.980 
0.964 
0.925 
0.871 
0.771 
0.586 

0.991 
0.988 
0.976 
0.962 
0.913 
0.853 
0.762 
0.606 

0.989 
0.987 
0.972 
0.957 
0.908 
0.848 
0.753 
0.600 

(r(m))=3.92 
(r=(m))= 1.73 

0.973 0.975 
0.964 0.967 
0.934 0.937 
0.895 0.897 
0.785 0.784 
0.680 0.676 
0.546 0.545 
0.379 0.389 

( r ( c c ) )  =4.88 
(rg(m)) = 2.14 

0.973 0.974 
0.961 0.962 
0.934 0.935 
0.893 0.893 
0.772 0.768 
0.683 0.677 
0.517 0.512 
0.355 0.355 

(r(ffi))= 5.68 
(r;(m )) = 2.48 

0.974 0.974 
0.964 0.964 
0.935 0.936 
0.890 0.889 
0.772 0.768 
0.670 0.664 
0.536 0.530 

(?(m))'"=4.24 
( v i (  = ) ) I n  = I .78 

0.984 0.981 
0.978 0.975 
0.959 0.956 
0.935 0.930 
0.866 0.857 
0.798 0.786 
0.690 0.676 
0.555 0.541 

(~'(ffi))I,~=5.29 
(r;(~))',7=2.20 

0.982 0.981 
0.973 0.972 
0.955 0,972 
0.929 0.925 
0.851 0.844 
0.791 0.781 
0.665 0.652 
0.527 0.515 

(~'(m)) ' '~=6.16 
(d( a))''? =2.55 

0.981 0.981 
0.974 0.974 
0.955 0.954 
0.927 0.924 
0.849 0.841 
0.779 0.768 
0.677 0.664 
0.522 0.510 0.4 0.414 0.410 0.609 0.377 0.377 
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Table 2. (Continued) 

AS-WRS RfS 

D" A B C D A B C D 

48 sreps 
(r(m))=9.89 
(r,(m))=4.10 

4.0 0.989 
3.0 0.973 
2.0 0.961 
1.5 0.930 
I .o 0.840 
0.8 0.750 
0.6 0.602 
0.4 0.409 

58 steps 
(r(m))= I I .06 
( rJm))=4.60 

4.0 0.980 
3.0 0.979 
2.0 0.957 
1.5 0.924 
I .o 0.841 
0.8 0.746 
0.6 0.591 

(?(m))'P= 10.51 
( r ~ ( m ) ) ' " = 4 . l 8  

0.989 0.992 
0.973 0.985 
0.962 0.977 
0.931 0.958 
0.840 0.907 
0.748 0.856 
0.597 0.761 
0.406 0.606 

(rZ(m)>'!'= 11.78 
(r:(m))'n=4.68 

0.980 0.985 
0.978 0.987 
0.956 0.972 
0.925 0.956 
0.840 0.904 
0.742 0.852 
0.588 0.755 

0.991 
0,983 
0.975 
0.956 
0.903 
0.858 
0.752 
0.595 

0.986 
0.987 
0.972 
0.955 
0,901 
0.846 
0,746 

(r(cc))=6.39 
(r,(m))=2.78 

0.972 0.974 
0.961 0.961 
0.931 0.932 
0.891 0.891 
0.765 0.760 
0.677 0.670 
0.538 0.532 
0.382 0.337 

(r(m))=7.02 
(r,(m))=3.05 

0.974 0.974 
0.961 0.961 
0.930 0.930 
0.889 0.889 
0.776 0.761 
0.667 0.659 
0.517 0.511 

(r'(m))''' =6.93 
(&m))"'=2.86 

0.981 0.981 
0.973 0.973 
0.953 0.952 
0.927 0.923 
0.844 0.836 
0.783 0.773 
0.680 0.667 
0.532 0.519 

(?'(a = 7.62 
( ~ ( m ) ) " ' = 3 . 1 4  

0.981 0.981 
0.973 0.973 
0.953 0.952 
0.926 0.923 
0.845 0.837 
0.776 0.765 
0.660 0.647 

0.4 0.403 0.399 0.597 0.588 0.343 0.340 0.493 0.480 

steps. Tables I and 2 convincingly show that scaling is well obeyed for all the above 
mean quantities. It is then convenient to express the inverse mean values A-', E - ' ,  C-' 
and D-' in increasing powers of PO',  so that at the limit of an infinite radius of the 
confining sphere, the value one, corresponding to free walks, is recovered: 

A- '=  I+alpO'+azpo2+a3p,3+a4p04. ( 8 )  

The a, values for the various means are given in table 3. This table has been obtained 
using the data in table 2 and a least squares fit algorithm. 

In figures 1 and 2 are displayed the concentration profiles of end steps E and mid- 
steps F of the SAWS as functions of N, of the reduced radius pa of the sphere, and of 
the reduced distance p from its centre. It is seen that scaling, i.e. independence of these 
quantities with respect to N when reduced-length variables are used, is satisfactory, 
except for the lowest N- and p-values. Therefore, one may look, for not too small N- 
and p-values, for an expansion in powers of p (O<p<po),  where the prefactors a, p ,  
y and 6 are functions of pa: 

An equivalent expansion holds for F. The functions a( pa), etc. may be visualized by 
plotting the a-values as a function of pa, the reduced radius of the sphere (figure 3). An 
expansion of the form (9) is the condensation in a single relationship of the information 
contained rn all possible figures of the kind displayed in figures 1 and 2. Our MC data 
are not, however, quantitatively dense enough and qualitatively precise enough to assign 
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Table 3. Prefactom of the expansions for the parameters A ', B I. C ' and D I ,  defined 
in table I, in powers of p i ' .  where po is the reduced radius of the confining sphere, for 
SAW% and RFWS (see equation (8)). The data 01 table 2 have been used. The last column 
displays the mean square error (MSE) in the fitting process. Sucli expansions are warranted 
by scaling, that is, independence of the above parameters with respect to the length of the 
walk. 

0, a2 a, a+ MSEX 10'' 

WRS 
A" 0.11395 
8.' 0,11365 
C" 0.04732 
D - '  0.04326 

RFS 
A - '  0.11818 
B-' 0.08324 
C- '  0.05605 
D . '  0.04765 

-0.22799 
-0.22930 
-0.03451 
-0.02706 

-0.1 1052 
-0.00223 

0.03069 
0.05545 

0.40031 
0.40666 
0. I2221 
0.12401 

0.38191 
0.31167 
0.12932 
0. I2404 

-0.09318 
-0.09515 
-0.02896 
-0.02989 

-0.09362 
-0.07995 
-0.03391 
-0.03382 

9.910 
9.488 
4.858 
4.266 

10.024 
7.825 
3.735 
4.949 

Figure 1. (0 )  SAW concentration of end steps. for pu, the reduced radius of the confining 
sphere equal to one. and for values of Nas indicated. Scaling. i.e. independence with respect 
to N ,  is well obeyed. (h)  SAW concentration of end steps, for values of pa as indicated. 
Because ofscaling, these curves do not depend on the value of N, the number of steps in 
the walk. The horizontal line corresponds to the uniform concentration within the sphere. 
To obtain the actual concentrations corresponding to each curve for a given sample size, 
one should multiply the ordinates by 6'. 
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-1 

-2 

-3 

I 
1 2 3 L B 

FIgure 3. Variation of the prefactors a(p , ) ' (O)  and p(m) ( 0  ) for step concentration in 
the expansion of equation (9 ) .  as a function of the reduccd radius po of the confining 
sphere. 
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Table 4. Prefactors a(&), p(po), y(po) and S(p,l. where pn is the reduced radius of the 
confining sphere. in the expansion (9). for the density of end steps E(po, pl and mid-steps 
F(p., p). as functions of the  reduced distance (O<p<pd from the centre of the  confining 
sphere. Scaling of the density profiles (see figure I (a) ) ,  allows such an expansion. 

PO 
4 1.49699 -0.21066 0.20086 
3 1.70527 -0,19739 0.31062 
2 2.14206 -0.07372 -0.14657 
I .5 2.46484 -0.15944 -0.94272 
I .o 2.36452 -0.71960 - 1.24288 
0.8 2.29310 - 1.07706 -0.85034 
0.6 2.00655 - 1.29246 0.61 373 
0.4 1.60318 - 1.579 10 7.85277 

F(Po,P)  a (pd P(Pd Y(P0) 

-0.05433 3.521 
-0,14266 0.910 
-0.17372 2.876 
-0.00616 3.396 
-0.13348 4.911 
-I .29 188 10.242 
-6.05622 I 1.466 

-28.37333 17.953 

& ( P O )  &(PO) MSE X 10'' 

PO 
4 1.3500 I 0.39807 
3 1.53275 0.41211 
2 2.37097 -1.21260 
1.5 3.14686 - 1.69919 
I .o 4.40133 2.88603 
0.8 4.81322 3.91246 
0.6 3.48097 -1.02817 
0.4 2.41 6 64 -2.98805 

-0.53797 0.27448 
-0.79310 0.59217 

3.05485 -2.60021 
6.25089 -10.02504 

-I 1,57372 -8.59143 
-12.56955 -46.81606 

18.45764 -97.09703 
23.82456 -68.51644 

-0.04638 2.464 
-0.15018 1.302 

0.50923 6.372 
3.82474 8.172 

13.81574 56.744 
62.674 I3 135.571 
83. I81 92 104.704 

-54.15030 71.011 

adefinite analytical form to the functions a(p& p(pa) and even more so to the functions 
y(p.) and 6(po). For this reason, we only tabulate in table 4, for the end steps E and 
the mid-steps F, the values of the above prefactors as functions of po. 

In figure 4 the density G of steps as a function of N ,  po and p is shown for SAWS. 
Again scaling is obeyed, with the same reservations as for the concentration of end and 
mid-steps. Table 5 displays the values of the prefactors a, /3, y and S for segment 
concentration in an expansion analogous to the expansion (9) for end steps. As for end 
and mid-steps, the quantity and precision of our data does not permit to fix with 
certainty the analytical form of these prefactors as functions of po. Figure 5 displays 
the step density for RFWS, and to make the comparison with SAWS visible, figure 6 
displays the profiles for both SAWS and RFWS, for a few values of po. 

5. Discussion 

As already indicated in the introduction. only features proper to AS are considered 
here. Also, the concentration profiles provided here correspond to the case where the 
confining boundary is a zero-infinite potential. in other words, adsorption phenomena 
are not taken into account, as they lie beyond the scope of the present paper. Finally, 
the statistics involve only the basic case where there are no energetic interactions between 
nearest neighbours, other than the geometric excluded volume constraint. For real 
polymer chains in solution, this corresponds approximately to chains dissolved in an 
athermal solvent. 

From the theoretical standpoint, the concentration profiles of RFW chains confined 
inside a cubic box have been studied by Collins and Wragg [4]. To this end, they used 
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Figure 4. SAW concentration of steps as a function of po.  the reduced radius of the confining 
sphere. The horizontal line corresponds to the uniform concentration within the confining 
sphere. Actual concentrations for tach po value arc obtained by multiplying the correspond- 
ing ordinates by &’. 

4 

Figure 5. RFW concentration of steps as a function of pol the reduced radius of the confining 
sphere. The horizontal line corresponds to the uniform concentration of segments inside 
the sphere. 
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Table 5. Prefacton cr(po), p(po), y(po) and 6(p0).  in the expansion (9). for the density of 
segments, where PO is the reduced radius of the confining sphere and p (O<p<po) the 
reduced distance from the Centre of the sphere. 

G(P.. P )  a b )  P(Pd  Y(Pd 6(Pd &(PO) MSF. X l o ”  

Pa 
4 1.31919 0.40292 
3 1.59755 0.03592 
2 2.12974 -0.27668 
1.5 2.94295 -0.79975 
I .o 3.83624 -0.61822 
0.8 4.44822 -3.75552 
0.6 3.56248 -1.00559 
0.4 2.33605 0.79250 

-0.54758 
-0.13814 

0.83293 
1,73496 

-4.62 I93 
-3.05579 
- 14.45037 
- 10.21466 

0.28177 
0.17847 

-0.94605 
-3.65264 
-4.12158 
-6.90928 
-4.49493 

-15.35651 

-0.04821 2.219 
-0.066954 1.058 

0,14890 4.844 
128504 5.170 
5.804 I 4  7.366 

10.42646 9.935 
26.01675 13.237 

-10.77303 9.428 

a previous theoretical work by Edwards and Freed [3]. On the other hand, most MC 
or EE studies of confined chains, whether RFW or SAW, are concerned with chains inside 
strips or tubes. or limited by a wall [6-8,11-16], which means that at least one dimension 
of the chain is allowed to go to infinity. An MC study of SAWS confined inside cubes 
has been performed by Cifra et a1 [ 191, but their work is primarily concerned with the 
entropy problem. The same may be said regarding the work of Casassa on confined 
RFWS inside various geometries 121, apparently the first theoretical work to appear on 
this topic. Akin but by no means identical to the problem of chains confined inside 

3 

Figure 6. Comparison of step concentration profiles for RFWS (solid curve) and SAWS 

(broken curve), for several values of the reduced radius of the confining sphere. Notice that 
the reduction length is not the same for RFWS (0.9UN0-’) and SAW* (NaS9’), so that the 
same po  values correspond to different aciual diameters of the confining spheres for RFWI 

and SAWS, respectively. 
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spheres is that of chains generated in spaces containing fixed obstacles [ 18, 321. Detailed 
investigations of the concentration profiles of RFWS or SAWS confined inside spheres, 
except [ 171, are not known to the present authors. Therefore, comparison with previous 
work will be limited here to the theoretical work of Collins and Wragg, on RFW chains. 
The comparison will necessarily be qualitative, as the confining geometries are not 
iden tical. 

Inspection of the figures given in the above reference shows that the plateau region 
for the concentration profiles of end and mid-steps disappears, in the present paper’s 
notations, for ~ ~ ~ 1 . 3  (see figure 5 in [4]). The present investigation shows that the 
plateau region for the various concentration profiles disappears in the vicinity of 
pu% 1.5, in fair agreement with the previous value. More precise comparison is however 
not possible, because of the differing geometries of confinement, and the lack of more 
comprehensive data. From this we conclude that the presence of a boundary is not felt 
beyond approximately 1.5 times the mean end-to-end distance, a conclusion in accord 
with the less precise data of [ 171. 

A point which should be stressed is that, for symmetry reasons, the concentration 
profiles in figures I@), 2 and 4 should have a horizontal tangent for p=O, i.e. at the 
centre of the sphere. Such a behaviour cannot be deduced from our M C  data, since this 
region is vanishingly small for PO< 1.5, while lattice points are discreet and separated 
by finite distances. Thus, chain configurations take discreet values, unlike what happens 
for actual polymer chains, and the same may be said for mean distances. Further, the 
precision of the MC data is least at the centre of the sphere, where the central ‘shell’ 
(=sphere, in this case) has the smallest volume and contains the smallest number o f  
lattice points (in some instances a single point). For these reasons, it should be kept in 
mind that the concentration profile curves in figures 1, 2 and 4 are only approximate 
in the vicinity of p = 0. 

A finding of the present investigation is that if proper reduction lengths are used 
for RFWS and SAWS (0.922N0.5 and Nu’592, respectively), the concentration profiles inside 
the enclosing sphere are almost identical. We emphasize that these almost identical 
concentration profiles correspond, of course, for given chain lengths, to different radii 
of the confining sphere. For large p-values, the RFW concentrations are slightly larger, 
but a crossover occurs somewhere below p = p ~ ,  and the inverse phenomenon is then 
observed. This finding may be of some importance, since most theoretical calculations 
on confined chains rely on RFW statistics. Finally, the fact that concentration profiles 
of RFWS and SAWS are, inside a given sphere, different and somehow homothetical 
should be of importance when discussing partition of macromolecules in free space and 
inside pores. However, this point cannot be discussed before the entropy problem is 
developed, and is therefore left to a forthcoming paper. 

A Jaeckel and J Dayantis 
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