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Statistics of confined self-avoiding walks.
Part I: chain dimensions and concentration profiles
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Abstract. Self-avoiding (SAws) and random-flight (RFws) walks of varying number ¥ of
steps have been generated inside spheres of varying diameter R, using a random number
generator and an ad fioc computer program. The Monte Carlo samples, usually of 100 000
walks, thus obtained, aliowed the detenmination of the Following ratios, as a function of N
and R: first, the ratio 4 = {r(N, R)}/<r(N, )}, where {r(N, R}) stands for the mean {in
modulus) end-to-end distance of an N-step confined walk, and {r(N, co)) the same quantity
for an N-step non-confined walk; also, the corresponding ratios B, C and D, for the root-
mean-square end-to-end distance {*>'7?, the mean radius of gyration {r,), and, finally, the
root-mean-square radius of gyration {2 ', If reduced lengths are used, where the reduc-
tion length is of the form N, v being a scaling exponent, it is found that scaling, i.e.
independence of the above ratios with respect to the step number in the walk, is well obeyed.
The scaling exponent is equal te 0.592 for saws and to 0.500 for RFWs,

In order to determine the concentration profiles of end, mid- and ovetall steps inside
the sphere, the last has been divided in a prescribed number of spherical shells, up to 22,
of the same thickness, and the number of steps falling inside each shell registered. Again
using reduced lengths, it was thus found that all concentration profiles obey scaling, that
is, the concentration prefile as a function of the reduced distance from the centre of the
sphere is defined through a single curve, whatever the value of N. Our results allow a
compatrison of the parameters for confined sAws and R¥ws.

t. Introduction

In this paper we present a detailed analysis of the statistics of self-avoiding walks
{saws) confined inside spheres of varying diameter. The incentive for studying this topic
originates, of course, in that polymer chains in pores, a problem relevant (o gel permea-
tion chromatography (Gpc) can be modelled by saws confined by boundaries of sphei-
ical or other shape. However, the present paper should primarily be considered as a
study in its own right of the statistics of confined saws, independently of any correlation
with real polymer chains confined inside pores.

General scaling arguments related to free or confined chains have been given by de
Gennes [1]. Previous theoretical, exact enumeration (Eg} and Monte Carlo (Mc) studies
of random-flight walks (RFws) or saws confined inside various geometries are numerous
[2-22). These publications do not include papers more specifically concerned with
adsorption phenomena ¢r theta point polymer chain statistics. Despite this, it appears
that, from the viewpoint of basic statistical features, several properties have not been
studied, or, at least, properly elucidated. This statement is particularly true with respect
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1o saws. More specifically, for saws confined inside a sphere, one can make reference
to the following properties: (a) the mean and mean-square end-to-end distances and
radii of gyration, as a function of the radius R of the confining sphere and the number
N of steps in the walk; (b) the distribution of end and mid-sieps of confined saws, as
a function of r, the distance from the centre of the sphere, N and R; (¢} the concentration
profile of steps as a function of r, N and R; and (d) the entropy change upon confine-
ment of the walk.

For rRFws, points (8), (¢) and (d) above have been addressed analytically by Edwards
and Freed [3] and by Collins and Wragg [4]. To our knowledge, no such equivalent
treatment has been proposed for saws, and possibly the problem is not amenable to
rigorous analytical treatment. Hence, the interest of addressing these topics and also
additional ones using Mc simulations. Here, in part | of the present study, points (a),
(&) and (c) above will be addressed. Point (d) and related topics are left to a forthcoming
paper.

Statistical samples of N-step saws embedded in the simple cubic lattice and confined
by spheres of varying radius R were computer generated. Two sample generation pro-
cedures were used. These are now described in detail.

2. Chain generation processes—absorbing and reflecting statistics

Computer generation of walks, whether saws or RFws, may be performed on- or off-
lattice. Here we shall be exclusively concerned with saws and rRFws generated on the
simple cubic lattice. The basic generation processes of saws in general (on- or off-lattice
sAaws) are essentially two.

In a first-generation procedure [23, 24], considering first free (non-confined) walks,
the saws are generated step by step, using a random number generator, and all config-
urations which display lattice points twice visited by steps are eliminated from the
statistics. In practice, the chain generation process is stopped as soon as the walk being
generated encounters an afready visifed lattice point, and a new chain is initiated until
a chain is obtained which is devoid of any double occupancy. By this procedure, in
order to define mean values, all chains in the sample have the same statistical weight.
This advantage is, however, counterbalanced by attrition: as soon as the number of
steps N in the walk becomes large enough, the attrition (i.e. the probability of failure
when initiating a chain) becomes close to one, and, correspondingly, the yield close to
zero. This procedure, pionneered by Wall and his coworkers [23, 24], we call the absorb-
ing chain generation procedure, and the resulting statistics absorbing statistics (AS).
The attrition, a function of the number N of steps in the walk, will be denoted by the
symbol A.

In a second-generation procedure, initiated by Rosenbluth and Rosenbluth [25],
the walk is not slopped when it encounters an already visited lattice point. Instead,
another direction with no such effect is sought. If there are & such directions, one of
these is then taken with probability ™', In practice, the computer screens for possible
directions one or more steps ahead, and chooses with equal probability one of these
possible directions. Thus, an initiated chain is always terminated (no attrition), unless
the chain goes through a nest. In such a case, the walk is eliminated, and a new walk
is initiated, This generation procedure we calt the reflecting chain generation procedure,
and the corresponding statistics reflecting statistics (rs). In rs, the configurations



Statistics of confined self-avoiding walks 2655

obtained do not occur with the same probability. Compact configurations (i.e. config-
urations where many neighbour sites of a given step are occupied by other steps) are
favoured. For this reason, any configuration obtained must be weighed by a proper
statistical weight, in order to revert to the equal probability of configurations of absorb-
ing statistics. Let us consider the jth saw generated in the Mc sampie of N-step saws
and let us introduce the quantity

. 6
= 676X X 4 ) 3% 28 1716 % 5Y TV = [T ()" Zenax (1)
=1
=N (18)
Znax=6x5""", (1¢)

Here i stands for the number of possible choices for the direction to follow when
generating the kth step of saw j {up Lo five for all steps in the case of the simple cubic
lattice, except the first one, for which there are six or less available directions, according
to whether the first step lies on a lattice point far from or in the vicinity of the sphere
surface); »/ is the number of occurrences of this number of choices for the whole walk
when completed, where n takes the values one or zero. The statistical weight to be
attributed to saw j in the sample is then w' [25-27]. Qualitatively, this means that a
saw, where, in the mean, many neighbouring lattice points of any steps are oceupied
by other steps of the saw (‘compact’ saws) occur more often than necessary in the
mc sample when reflecting statistics are used. The more ‘compact’ the configuration
considered, the smaller the corresponding weighting factor w’ will then be. For a com-
pletely ‘compact’ saw (=globule or else Flamiltonian walk on a lattice), w’ is of the
order of 57~ ™. The other limit of w’ is one, when there are no nearest neighbours
between steps in the walk. Obviously, the weighting factor dereases in the mean as N
increases. The mean value in a sample of § saws,

5
(WH=5""'Y w (2)
=1
is a fundamental parameter in rs, as it will become clear in what follows. We shall
refer to it as the compaciness parameter.

The same parameters as above, i.e, the atfrition 4 in As and the parameter (W)
in Rrs, also apply if now the walk, instead of being free in space, is constrained to lie
inside the boundary defined by a sphere of radius R. In particular the attrition A(¥, R)
in As is enhanced by the presence of the boundary, since now any configuration crossing
the surface of the sphere is eliminated from the statistics, even if the walk is otherwise
a saw. In what follows A(N, o0) stands for the attrition of free (unconfined) saws,
while A(N, R) stands for the attrition of walks confined inside a sphere of radius R.
Analogously, dropping for simplicity the mean value brackets, we define in rs (N, «0)
and W(N, R).

The concepts of attrition and compactness may also be applied to confined rRFws.
For free RFws, the attrition is zero and the compactness parameter equal to one.

For the purposes of the present study, no sample enrichment procedures have been
considered. Only the two basic step-by-step generation procedures have been used, here
designated by absorbing and reflecting procedures. These two basic procedures are
variously named in the literature. Our particular designations of absorbing and reflecting
present the advantage of being reminiscent of the physics of the generation process.
Further, they are in accord with Smoluchowski’s denominations, who was the first to
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consider absorbing and reflecting barriers, when studying the physics of colloid aggrega-
tion [28, 29]. To end this section let us point out that non-weighed rs, i.e. the statistics
of the reflecting generation procedure, where all configurations in the sample are given
the same statistical weight, may be of interest in its own right. This statistics, however,
will not be considered here, the study being restricted {0 As and the equivalent weighed
RS {WRS).

3. The computer programs

The distinctive feature of our walk generation process is that the walks should lie inside
spheres of radius R. To initialize a walk, three integer random numbers lying between
zero and R are first obtained using 2 random number generation procedure. If the
corresponding point, taking as the origin of Cartesian coordinates the centre of the
sphere, corresponds to a lattice point within the sphere, the walk generation process is
pursued, by instructing the random number generator to provide an integer lying
between one and six, which will define the direction of the first step in the walk,
Otherwise, a new set of three random numbers is sought. This procedure ensures the
statistical independence of the three coordinates x, 3 and z, and a uniform distribution
of starting points for all lattice points inside the sphere. For the second and all following
steps in the walk, one of the six possible directions is excluded, that corresponding to
the reverse walk. In As, the walk is completed only if at no time does it go through an
already occupied lattice point and at no time crosses the surface of the sphere. This
means that, as & increases and (or) R decreases, the attrition A(N, R) very rapidly
becomes very close to one, and correspondingly the yield 1 — A(N, R) close to zero. To
circumvent this effect, rs has to be used instead. Here the number of random integers
provided corresponds at each step being generated to the number of allowed directions
for this step, this being determined by the previously generated steps in the walk and
the surface of the sphere. Only if the walk goes inside a nest {no further possibility to
pursue the walk generation process) is the walk abandoned, and a new walk initiated.
Thus, in Rrs, the attrition is usually small, except if the dimensions of the confining
sphere are of the same order of magnitude as those of the chain, or smaller. Most of
our MC data have been obtained using the weighed reflecting procedure, the absorbing
procedure having been used only in a limited number of instances, primarily in order
to ensure that the results from both procedures are statistically indistinguishable.

In order to be able o specify the distribution of end and mid-points inside the
sphere, as well as the concentration profile of steps, as funciions of the distance r from
the centre (points (a) to (¢) in the introduction), the following refinement was intro-
duced in the computer program: the sphere of radius R was divided into an arbitrary
number (up to 22) of spherical shells of the same thickness. The number of, for example,
end-points of saws in the mc sample, falling inside each spherical shell, was recorded
by the computer, and this number divided by the number of lattice points within each
shell, to ensure a consistent determination of concentration or density. The versatility
of our program also permitted to initiate the walk generation process not uniformty
inside the sphere, but only inside some (in particular only one) of the prescribed spher-
ical shells. Thus, it is possible to specify the statistics of saws starting from the central
or any other shell, and even only from the centre of the sphere. Further, it is also
possible to attribute different weights to the lattice points in different shells for the
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inittalization procedure. In the present paper only the statistics of the uniform distribu-
tion of starting points will be reported (i.e. the basic case where all lattice points within
the sphere have equal probability to be considered as starting points).

For completeness and in order to make a comparison available, RFws have also been
generated. The generation procedures are the same as previously, with the difference that
double or multiple occupancy of a lattice site is not now forbidden. Thus, attrition here
orginates only in the presence of a boundary, and similarly the compactness parameter
W differs from one only because of this boundary, since near the surface of the sphere
there are less than six possible directions to continue generating the random walk.

4. Mente Carlo resulis for chain dimensions and concentration profiles

In this paper we give results for the mean chain dimensions and concentration profiles
of confined chains, as functions of the number N of steps in the chain and the radius
R of the confining sphere. The number of configurations of confined saws and related
problems, especially the entropy problem, will be dealt with in a forthcoming paper.
Since most of our M data have been obtained using wrs, we give the definitions
of the various mean quantities we used for this statistics below. The corresponding
definitions for as are obtained by letting all w/ in the equations below equal unity:

Ef: 1 erj

=5 (3)
<ﬂ>=z—z—’—"’ﬂ,—’ @
<,s>=%i;£ (5)
<@>=%f (6)

In the above relationships, #’ is the end-to-end distance (in modulus) of walk j, and
ry the corresponding radius of gyration. S is the sample magnitude.

From the onset, it may be convenient to express all data using reduced variables
pPo=R/{r(0)>y and p=r/{r(o0)rn, where R is the radius of the confining sphere, »r
the distance from the centre of the sphere, and {r(00))>y the mean end-to-end distance
of N step walks in free space. In this way, scaling, that is, properties which depend on
po and p but not on N, will become apparent at once. Of course, instead of using
{r(c0)> as reduction parameter, one could have just as well used {r*(c0)>'/?, or the mean
or root-mean-square radius of gyration. All these quantities are essentially equivalent, as
for large enough N (say, ¥>20) they all obey, to a good approximation, a simple law
of the form

G(0)y =a, N (7)

where v is a scaling exponent (critical exponent for the correlation length) and a, a
prefactor relevant to the mean quantity {x{0)>. Equation (7) has been established in
the earliest days of simulations on saws [23, 24], and the fact that it now appears to
strictly carrect only in the limit of very large N (otherwise one has to take into account
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‘correction to scaling’ exponents} is irrelevant for present purposes. In three dimensions,
in the range 20 < N< 10% it is convenient to use the Mc value viuc=0.592, which has
been found by numerous investigators {30], instead of the renormalization group value
vrg=0.588, which, though in fact the correct one, is convenient only in the limit of
very large NV [31].

Table 1. 4= {r(po)/<r(x)d, B=<f (o' /() %, C= (rlpo)y/<rg()> and
D= ¢ri(pe)) ¥ /¢ra(20)) ', where {r) stands for the mean end-to-end distance and <rg)
for the mean radius of gyration, as a function of the reduced radius p, of the confining
sphere, po=R/{rY, for sAWs, MC results from 18 to 58 steps using As. MC sample sizes are
of 100 000 independent (=non-correlated) walks, for all the data here reported. The error
is estimated to be +0.006.

18 steps

{r{eo)y=5.52 L)) =584

Cryfeo)y=2.30 L)' =233

4.0 0.987 0,987 0.991 0.992
3.0 0.980 0,980 0.987 0.988
2.0 0.964 0.964 0.978 0979
1.5 0.940 0.94] 0.965 0.964
1.0 0.368 0.368 0.922 0.924
28 steps

Cr{ee)y=7.18 o) =762

{rglon)y =298 ri(e0)y' =303

40 0.985 0.984 0.993 0.991
3.0 0,978 0.977 0.987 0.986
2.0 0.960 0.960 0.977 0.976
1.5 0.933 0.934 0.960 0.960
1.0 0.351 0,851 0.916 0.911
38 steps

(r(eo))=8.63 () P =9.16

(o)) =3.58 (0] ¥ =364

4.0 0.983 0.984 0.989 0.990
3.0 0.975 0976 0.983 0.985
2.0 0.955 0.957 0.972 0.973
1.5 0.930 0.932 0.958 0.958
1.0 0.845 0.845 0.908 0.906

Table | displays the values of 4= {r(po))/{r(cc)), the mean end-to-end distance
for the reduced value p, of the confining sphere radius over the mean end-to-end
distance of the free walk, 8= {r*{ po))>'?/{r*(e0)>'/2, the same ratio for the root-mean-
square end-to-end distance, C={ry(po))/{rg(cc)), the same ratio for the radius of
gyration, and finally D= {r2(po)>'?/{ri(eo)> 1%, the same ratio for the root-mean-
square radius of gyration, for N-values ranging from 18 to 58 steps. These quantities
have been determined in this table using as (see section 2). In table 2 the same quantities
have been determined using wrs, to ensure that both walk generation procedures lead
statistically to the same mean values. Because of the very fast increase in computational
time when using As, one cannot reach low p, values with this generation procedure.
However, the pg values accessible by As are sufficient to show that there is no discrepancy
between the two procedures, as comparison of the data in tables 1 and 2 shows. Also
shown in table 2 are the corresponding quantities for rRFws of the same number of
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Table 2. 4, B, Cand D, as defined in table 1, as functions of py, the reduced radius of the
confining sphere. mc¢ results for saws from wrs. Also shown are the results for random-
flight statistics (Rr's). For saws, there is good agreement with the results of table {, that
is, A5 and wrs are equivalent and may be used interchangeably. Table 2 also shows that
scaling, that is, independence of the parameters with respect to the number of steps & in
the walk, is well obeyed, except for the shortest walk of [8 steps and the smallest values
of po. Tt shoutd be remarked that for not confined (free) R¥s, the theoretical value 6'=
2.4495 for the ratio B/D is not yet attained for 58 steps, while in wrs a limiting value of the
order of 2.51 for the above ratio is already attained for as few as 18 steps. Complementary
simulations, not reported here, have shown that for r¥s the ratio increases slowly with N,
to be within 0,005 of the theoretical limiting value for 250 steps, No explanation is offered
for this difference in behaviour between saws and rREws, which seems to be reported here
for the first time. The etror is estimated to be +0.006.

AS-WRS RFS

Pa A B c D A B c D

18 steps

¢r{oe)y=5.52 ¢ri(o0)y*=5.84 {r(oo)> =392 o) i=424
(rg(20)y=2.30 {iae)y =233 {rgfe0)y=1.73 GAxD'P=1.78
4,0 0.987 0.987 0.991 0.994 0.973 0.975 0.984 0.981
3.0 0.980 0.980 0.987 0.9%0 0.964 0.967 0.978 0.975
2.0 0.964 0.964 0.978 0.980 0.934 0.937 0.959 0.956
1.5 0.936 0.538 0.963 0.964 0.895 0.897 0.935 0.930
1.0 0.869 0.869 0.925 0.925 0.785 0.784 0.866 0.857
0.8 0.777 0.775 0.874 0.871 0.680 0.5676 0.798 0.786
0.6 0.607 0.605 0.778 0.771 0.546 0.543 0.690 0.676
0.4 0.394 0.388 0.593 0.586 0.379 0.389 0.553 0.541
28 steps

¢r(an)>=7.18 GHe)> =762 {r(oo)> =488 OMoo)' t=5.29
(re(o0)» =298 {(e0)>'?=3.03 {rfo0)) =214 L)' =220
4.0 0.985 0.985 0.991 0.991 0.973 0.974 0.582 0.981
3.0 0.978 0,978 0.988 0.988 0.961 0.962 0.973 0.972
2.0 0.961 0.961 0.977 0.976 0.934 0.935 0.955 0.972
1.5 0.936 0.936 0.963 0.962 0.893 0.893 0,929 0.925
1.0 0.853 0.852 0.916 0.913 0.772 0.768 0.851 0.844
03 0.753 0.750 0.859 0.853 0.683 0.677 0.791 0.781
0.6 0.609 0.605 0.772 0.762 0.517 0.512 0.665 0.652
0.4 0.418 0.414 0.615 0.606 0.355 0.355 0.527 0.515
38 steps

{r{ec)>=8.63 {(o0)¥ 2 =0.16 {r(oo)>=5.68 G o) =6.16
{rgen)y=3.58 Gd(e)y =364 {rg(c0)>=2.48 ooy =2.55
4.0 0.982 0.983 0.989 0.98% 0.974 0.974 0.981 0.981
3.0 0.977 0.978 0.986 0.987 0.964 0.964 0.974 0.974
2.0 0,951 0.953 0.972 0.972 0.935 0.936 0.955 0.954
L5 0.930 0.931 0.958 0.957 0.890 0.889 0.927 0.924
1.0 0.849 0.849 0.910 0.508 0.772 0.768 0.849 0.341
0.8 0.751 0.749 0.852 0.848 0.670 0.664 0.779 0.768
0.6 0.603 0.599 0.760 0.753 0.536 0.530 0.677 0.664
0.4 0.414 0.410 0.609 0.600 0.377 0.377 0.522 0.510
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Table 2. (Continued)

AS-WRS RFS

Po A B ¢ D 4 B c D

48 steps

<r{0))=9.89 <o) =10.51 {r(ee)5=6.39 (o) P =693
{r(c0)y=4.10 (ra(en)y =418 {rele0)> =278 (ri{ o)) =2.86
40 0.989 0.989 0.992 0.991 0.972 0974 0.981 0.981
30 0.973 0.973 0.985 0.983 0.961 0.961 0.973 0.973
20 0.961 0.962 0.977 0.975 0.931 0932 0953 0.952
1.5 0.930 0.931 0958 0.956 0.891 0.891 0.927 0.923
1.0 0.840 0.840 0.907 0.903 0.765 0.760 0.844 0.836
0.8 0.750 0.748 0.856 0.858 0.677 0.670 0.783 0.773
0.6 0.602 0.597 0.761 0.752 0.538 0.532 0.680 0.667
0.4 0.409 0.406 0.606 0.595 0.382 0.337 0.532 0.519
38 steps

{r(o0)>=11.06 ey =11.78 ())y=17.02 {Peo)y' 2 =T7.62
{rgloo)>=4.60 (o)) =468 rglo0))=3.05 Ao P=314
4.0 0.980 0.980 0.985 0.986 0.974 0.974 0.981 0.981
3.0 0.979 0.978 0.587 0.987 0.961 0.961 0.973 0.973
20 0.957 0.956 0972 0.972 0.930 0.930 0.953 0.952
1.5 0.924 0.925 0.956 0.955 0.889 0.589 0.926 0.923
1.0 0.84] 0.840 0.904 0.901 0.776 0.761 0.845 0.837
0.8 0.746 0.742 0.852 0.84¢6 0.667 0.659 0.776 0.765
0.6 0.591 0.588 0.755 0.746 0.517 0.511 0.660 0.647
0.4 0.403 0.399 0.597 0.588 0.343 0.340 0.493 0.480

steps. Tables 1 and 2 convincingly show that scaling is well obeyed for all the above
mean quantities. It is then convenient to express the inverse mean values 4~', B™', C'
and D~' in increasing powers of pp', so that at the limit of an infinite radius of the
confining sphere, the value one, corresponding to free walks, is recovered:

A =1+ a1p5" +aps  +asps’ Faspst . (8)

The o, values for the various means are given in table 3. This table has been obtained
using the data in table 2 and a least squares fit algorithm.

In figures I and 2 are displayed the concentration profiles of end steps E and mid-
steps F of the saws as functions of N, of the reduced radius p, of the sphere, and of
the reduced distance p from its centre. It is seen that scaling, i.e. independence of these
quantities with respect to N when reduced-length variables are used, is satisfactory,
except for the lowest N- and p-values. Therefore, one may look, for not too small N-
and p-values, for an expansion in powers of p (0<p < py), where the prefactors a, f,
y and & are functions of pe:

E(pa, p) = a(po) + B(pa)p+ ¥{po)o* + 8(po)p* +. . ... 9)

An equivalent expansion holds for F. The functions a( po), etc, may be visualized by
plotting the a-values as a function of py, the reduced radius of the sphere (figure 3). An
expansion of the form (9) is the condensation in a single relationship of the information
contained in all possible figures of the kind displayed in figures 1 and 2. Our Mc data
are not, however, quantitatively dense enough and qualitatively precise enough o assign
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Table 3. Prefactors of the expansions for the parameters 4 ', 8 ', € 'and D ', defined
in table 1, in powers of p; ', where po is the reduced radius of the confining sphere, for
saws and RFws (see equation (8)). The data of table 2 have been used. The last column
displays the mean square error {MSE} in the fitting process. Such expansions are warranted
by scaling, that is, independence of the above parameters with respect to the length of the
walk,

ay da a3 aq MSF.XIOH’
WRS
AP 011395 —0.22799 0.40031 —0.00318 9.910
B~' 0.11365 —0.22930 0.40666 —0.09515 9,488
C™to0.04732 —0.03451 0.12221 —0.02896 4.858
D" 0.04326 —0.02706 0.12401 —0.02989 4.266
RFS
A" 0113818 —-0.11052 0.38191 —0.09362 10.024
B~ 0.08324 —0.00223 031167 —0,07995 7.825
C' 0.05605 0.03069 0.12932 —0.03391 3735
D' 0.04765 0.05545 0.12404 —0.03382 4.949
1]
=
4
3

3 042608 1 15 2

Figure 1. {a) saw concentration of end steps, for py, the reduced radius of the confining
sphere equal to one, and for values of ¥ as indicated. Scaling, i.e. independence with respect
to ¥, is well obeyed. (b) saw concentration of end steps, for values of po as indicated.
Because of scaling, these curves do not depend on the value of ¥, the number of steps in
the walk. The horizontal line corresponds to the uniform concentration within the sphere,
To obtain the actual concentrations corresponding to each curve for a given sample size,
one should multiply the ordinates by pg°.
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Figure 2. sAw concentration of mid-steps, as a function of gy, the reduced radius of the
confining sphere. The horizontal line corresponds to the uniform concentration within the
sphere. To obtain the actual concentrations corresponding to each curve for a given sample
size, one should multiply the ordinates by p;°.

1 2 3 4 [

Figure 3. Variation of the prefactors a(pu}'(O) and B(p,} (@) for step concentration in
the expansion of equation (9), as a function of the reduced radius py of the confining
sphere.
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Table 4. Prefactors a(pe), B(po). ¥€po} and 3(pq), where py is the reduced radius of the
confining sphere, in the expansion {9), for the density of end steps £(pq, p) and mid-steps
F(pa, p), as functions of the reduced distance (0<p < py) from the centre of the confining
sphere. Scaling of the density profiles (see figure 1{a}), allows such an expansion.

E(pn, p) aipo) Bipo) 7(pa) 3(po) MSE =10

Po

4 1.49699 ={.21066 0.20086 —0.05433 3.521

3 1.70527 —0,19739 0.31062 ~0.t4266 0.910

2 2.14206 =-0.07372 ~0.14657 -0.17372 2.876

1.5 2.46484 =-0.15944 ~0.94272 —-0.00616 3.396

1.0 2.36452 =0.71960 ~1.24288 —0.13348 4911

0.8 229310 —-1.07706 —-0.835034 —-1.29188 10.242

0.6 200655 —1.29246 0.61373 -6.05622 11.466

0.4 1.60318 - [.57910 T.85277 -28.37333 17.953

Flpo, o) e(pn) Bl ¥{(po) 8{pa) &( o0} MSE x10*?
Po

4 1.35001 0.39807 -0.53797 0.27448 —0.04638 2.464
3 1.53275 041211 —0.79310 0.59217 -0.15018 1.302
2 2.37097 -1.21260 3.05485 =2.60021 0.50923 6.372
I.5 3.14686 -1.69919 6.25089 ~10.02504 3.82474 8.172
[.0 440133 2.88603 =11.57372 —8.59143 13.81574 56,744
0.8 4.81322 3.91246 —12,356955 —46.81606 62.67413 135.571
0.6 348097 -1.02817 18.45764 -97.09703 83.18192 104,704
0.4 2.41664 —2.98305 2382456 —63.51644 -54.15030 77.01

a definite analytical form to the functions a{p,)}. 5(pg) and even more 50 to the functions
¥({po) and &(pg). For this reason, we only tabulate in table 4, for the end steps £ and
the mid-steps F, the values of the above prefactors as functions of p,.

In figure 4 the density & of steps as a function of N, py and p is shown for saws,
Again scaling is obeyed, with the same reservations as for the concentration of end and
mid-steps. Table 5 displays the values of the prefactors ¢, f, ¥ and & for segment
concentration in an expansion analogous to the expansion (9) for end sieps. As for end
and mid-steps, the quantity and precision of our data does not permit to fix with
certainty the analytical form of these prefactors as functions of p,. Figure 5 displays
the step density for RFws, and to make the comparison with saws visible, figure 6
displays the profiles for both saws and rFws, for a few values of p,.

5. Discussion

As already indicated in the introduction, only features proper to As are considered
here. Also, the concentration profiles provided here correspond to the case where the
confining boundary is a zero-infinite potential. In other words, adserption phenomena
are not taken into account, as they lie beyond the scope of the present paper. Finally,
the statistics involve only the basic case where there are no energetic interactions between
nearest neighbours, other than the geometric excluded volume constraint. For real
polymer chains in solution, this corresponds approximately to chains dissolved in an
athermal solvent.

From the theoretical standpoint, the concentration profiles of RFw chains confined
inside a cubic box have been studied by Collins and Wragg [4]. To this end, they used
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=

Figure 4. sAw concentration of steps as a function of pg, the reduced radius of the confining
sphere. The horizontal line cortesponds to the uniform concentration within the confining
sphere. Actual concentrations for ¢ach pp value are obtained by multiplying the correspond-
ing ordinates by p5*.

o~

-

i

Q62608 1 1= 2

Figure 5. RFw concentration of steps as a function of py, the reduced radius of the confining
sphere. The horizental line corresponds to the uniform concentration of segments inside
the sphere.
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Table 5. Prefactors & (o), B(po}, ¥(po) and &(po), in the expansion (9), for the density of
segments, where gy is the reduced radius of the confining sphere and p (0<p<py) the
reduced distance from the centre of the sphere.

Glpo, p) a(po) B(pa) 7(po) &(p0) (o) MsE x10*
Pa

4 131919 0.40292 —0.54758 0.28177 —0.0482¢ 2.219

3 1.59755 0.03592 ~0.13374 0.17847 =0.066954 1.058

2 2.12974 —0.27668 0.83293 —0.94605 0.14890 4,844

1.5 2.94295 —0.79975 1.73496 —3.65264 £.28504 5.170

10 3.83624 —0.61822 —4.62193 —~4,12158 5.80414 7.366

0.3 4.44822 —3.75552 —-3.05579 —6.90928 10.42646 9.935

0.6 3.56248 —1.00559 —14.45037 —4.49493 26.01675 13,237

0.4 233605 0.79250 —10.21466 —15.35651 =10.77303 9.428

a previous theoretical work by Edwards and Freed [3]. On the other hand, most Mc
or ek studies of confined chains, whether RFw or saw, are concerned with chains inside
strips or tubes, or limited by a wall [6-8, 11-16], which means that at least one dimension
of the chain is allowed to go to infinity. An Mc study of saws confined inside cubes
has been performed by Cifra et 4/ [19], but their work is primarily concerned with the
entropy problem. The same may be said regarding the work of Casassa on confined
RFw: inside various geometries [2], apparently the first theoretical work to appear on
this topic. Akin but by ne means identical to the problem of chains confined inside

Figure 6. Comparison of step concentration profiles for rRFws (solid curve) and saws
(broken curve), for several values of the reduced radius of the confining sphere. Notice that
the reduction length is not the same for RFws (0.922N"") and saws (N¥*®%), so that the
same pp values correspond to different actual diameters of the confining spheres for RFWs
and SAWs, respectively.
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spheres is that of chains generated in spaces containing fixed obstacles [18, 32]. Detailed
investigations of the concentration profiles of RFws or saws confined inside spheres,
except [I7], are not known to the present authors. Therefore, comparison with previous
work will be limited here to the theoretical work of Collins and Wragg, on rRFw chains.
The comparison will necessarily be qualitative, as the confining geometries are not
identical.

Inspection of the figures given in the above reference shows that the plateau region
for the concentration profiles of end and mid-steps disappears, in the present paper’s
notations, for pya:1.3 (see figure 5 in [4]). The present investigation shows that the
plateau region for the various concentration profiles disappears in the vicinity of
po=1.5, in fair agreement with the previous value. More precise comparison is however
not possible, because of the differing geometries of confinement, and the lack of more
comprehensive data. From this we conclude that the presence of 2 boundary is not felt
beyond approximately 1.5 times the mean end-to-end distance, a conclusion in accord
with the less precise data of [17].

A point which should be stressed is that, for symmetry reasons, the concentration
profiles in figures 1(4), 2 and 4 should have a horizontal tangent for p=0, i.e. at the
centre of the sphere. Such a behavicur cannot be deduced from our mc data, since this
region is vanishingly small for py<1.5, while lattice points are discreet and separated
by finite distances. Thus, chain configurations take discreet values, unlike what happens
for actual polymer chains, and the same may be said for mean distances. Further, the
precision of the mc data is least at the centre of the sphere, where the central ‘shell’
{(=sphere, in this case) has the smallest volume and contains the smalflest number of
lattice points (in some instances a single point). For these reasons, it should be kept in
mind that the concentration profile curves in figures 1, 2 and 4 are only approximate
in the vicinity of p=0.

A finding of the present investigation is that if proper reduction lengths are used
for RFws and saws (0.922N°%° and N™*%2 respectively), the concentration profiles inside
the enclosing sphere are almost identical. We emphasize that these almost identical
concentration profiles correspond, of course, for given chain lengths, to different radii
of the confining sphere. For large p-values, the RFw concentrations are slightly larger,
but a crossover occurs somewhere below p=p,, and the inverse phenomenon is then
observed. This finding may be of some importance, since most theoretical calculations
on confined chains rely on RFw statistics. Finally, the fact that concentration profiles
of RFws and saws are, inside a given sphere, different and somehow homothetical
should be of importance when discussing partition of macromolecules in free space and
inside pores. However, this point cannot be discussed before the entropy problem is
developed, and is therefore left to a forthcoming paper.
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